Butterworth Polynomials

TABLE 15.1 Normalized (so that $\omega_{\mathbf{c}}=1 \mathrm{rad} / \mathrm{s}$) Butterworth Polynomials up to the Eighth Order

\boldsymbol{n}	\boldsymbol{n} th-Order Butterworth Polynomial
1	$(s+1)$
2	$\left(s^{2}+\sqrt{2} s+1\right)$
3	$(s+1)\left(s^{2}+s+1\right)$
4	$\left(s^{2}+0.765 s+1\right)\left(s^{2}+1.848 s+1\right)$
5	$(s+1)\left(s^{2}+0.618 s+1\right)\left(s^{2}+1.618 s+1\right)$
6	$\left(s^{2}+0.518 s+1\right)\left(s^{2}+\sqrt{2}+1\right)\left(s^{2}+1.932 s+1\right)$
7	$(s+1)\left(s^{2}+0.445 s+1\right)\left(s^{2}+1.247 s+1\right)\left(s^{2}+1.802 s+1\right)$
8	$\left(s^{2}+0.390 s+1\right)\left(s^{2}+1.111 s+1\right)\left(s^{2}+1.6663 s+1\right)\left(s^{2}+1.962 s+1\right)$

$$
|H(w)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{b}}\right)^{2 N}}}
$$

Fig. 11.9 Magnitude response for Butterworth filters of various order with $\epsilon=1$. Note that as the order increases, the response approaches the ideal brick-wall type transmission.

